Фармакопея. Издание XIV. Том I. Введение, Общие положения, Методы анализа лекарственных средств. Реактивы
Кривая, отражающая зависимость между активностью антибиотика и разме- ром зоны угнетения роста тест–микроба, после перехода к координатам «ло- гарифм концентрации (lg C ) − диаметр зоны ( D )» преобразуется в прямую, уравнение которой: D = а + b · lg C, где а − свободный член; b − угловой коэффициент. По исправленным значениям величин диаметров зон d 1 ; d 2 ; d 4 ; d 5 для растворов стандартного образца с концентрациями С 1 ; C 2 ; С 4 ; C 5 и общей средней величине диаметра зоны d 3 , соответствующей контрольной С 3 , рас- считывают величины а и b с применением метода наименьших квадратов. Так как концентрации С 1 ; C 2 ; С 3 ; С 4 ; C 5 составляют геометрическую про- грессию, формулы для вычисления коэффициентов а и b могут быть записа- ны в виде: b = (– 2 d 1 – d 2 + d 4 + 2 d 5 )/10 • lg Z ; a = d – b •lg C 3 , где Z — знаменатель прогрессии разведения; d = ( d 1 + d 2 + d 3 + d 4 + d 5 )/5. Пример . Пусть знаменатель прогрессии разведения Z = 1,25, С 3 = 5,0, а средние значения диаметров зон (в мм) равны: d 1 = 17,64; d 2 = 18,15; d 3 = 19,03; d 4 = 19,58; d 5 = 20,09. Тогда: b = (–2 • 17,64 – 18,15 + 19,58 + 2 • 20,09) / (10 • lg 1,25) = 6,33 : 0,969 = 6,532. d = (17,64 + 18,15 + 19,03 + 19,58 + 20,09) / 5 = 18,90; a = 18,90 – 6,532 • 0,6990 = 14,33. Если в опыте с одной стандартной кривой проведено n испытаний об- разца, то логарифм среднего значения концентрации испытуемого образца в 1289
Made with FlippingBook
RkJQdWJsaXNoZXIy NDU0NjM=